fix: colors and other

This commit is contained in:
2025-12-30 06:28:40 +03:00
parent 19d4fe09b6
commit 592e393f06
3 changed files with 85 additions and 105 deletions

185
main.py
View File

@@ -7,16 +7,13 @@ import asyncio
import re
from pathlib import Path
from collections import deque
from typing import List, Dict, Tuple
from typing import List, Dict
import torch
from dotenv import load_dotenv
from rich.console import Console
from rich.panel import Panel
from rich.markdown import Markdown
from prompt_toolkit import PromptSession
from prompt_toolkit.styles import Style
from prompt_toolkit.patch_stdout import patch_stdout
from langchain_community.document_loaders import UnstructuredMarkdownLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
@@ -32,13 +29,14 @@ from watchdog.events import FileSystemEventHandler
# =========================
# CONFIG
# =========================
console = Console()
console = Console(color_system="standard", force_terminal=True)
session = PromptSession()
load_dotenv()
style = Style.from_dict({"prompt": "bold #6a0dad"})
# --- PROMPTS ---
OLLAMA_BASE_URL = os.getenv("OLLAMA_BASE_URL", "http://localhost:11434")
SYSTEM_PROMPT_SEARCH = os.getenv("SYSTEM_PROMPT", "You are a precise technical assistant. Cite sources using [filename]. Be concise.")
SYSTEM_PROMPT_ANALYSIS = (
"You are an expert tutor and progress evaluator. "
@@ -51,7 +49,7 @@ SYSTEM_PROMPT_ANALYSIS = (
USER_PROMPT_TEMPLATE = os.getenv("USER_PROMPT_TEMPLATE",
"Previous Conversation:\n{history}\n\nContext from Docs:\n{context}\n\nCurrent Question: {question}")
MD_DIRECTORY = os.getenv("MD_FOLDER", "./notes")
MD_DIRECTORY = os.getenv("MD_FOLDER", "./my_docs")
EMBEDDING_MODEL = os.getenv("EMBEDDING_MODEL", "nomic-embed-text")
LLM_MODEL = os.getenv("LLM_MODEL", "llama3")
@@ -64,28 +62,11 @@ CHUNK_OVERLAP = 200
TOP_K = 6
COLLECTION_NAME = "md_rag"
# Limit context size for Analysis mode (approx 24k chars ~ 6k tokens) to prevent OOM
MAX_ANALYSIS_CONTEXT_CHARS = 24000
BATCH_SIZE = 10
MAX_PARALLEL_FILES = 3
# =========================
# GPU SETUP
# =========================
def setup_gpu():
if torch.cuda.is_available():
torch.cuda.set_per_process_memory_fraction(0.95)
device_id = torch.cuda.current_device()
device_name = torch.cuda.get_device_name(device_id)
total_vram = torch.cuda.get_device_properties(device_id).total_memory / (1024**3)
console.print(f"[green]✓ GPU: {device_name} ({total_vram:.1f}GB)[/green]\n")
else:
console.print("[yellow]⚠ CPU mode[/yellow]\n")
console.print("\n")
setup_gpu()
# =========================
# UTILS & CACHE
# =========================
@@ -105,14 +86,12 @@ def save_hash_cache(cache: dict):
# ROUTING LOGIC
# =========================
def classify_intent(query: str) -> str:
"""
Determines if the user wants a specific search (RAG) or a global assessment.
"""
analysis_keywords = [
r"assess my progress", r"eval(uate)? my (learning|knowledge)",
r"what have i learned", r"summary of (my )?notes",
r"my progress", r"learning path", r"knowledge gap",
r"оцени (мой )?прогресс", r"что я выучил", r"итоги", r"анализ знаний"
r"оцени (мой )?прогресс", r"что я выучил", r"итоги", r"анализ знаний",
r"сегодня урок", r"что я изучил"
]
query_lower = query.lower()
@@ -137,7 +116,6 @@ def validate_chunk_size(text: str, max_chars: int = MAX_EMBED_CHARS) -> List[str
current += sentence
else:
if current: chunks.append(current.strip())
# Handle extremely long sentences by word splitting
if len(sentence) > max_chars:
words = sentence.split()
temp = ""
@@ -164,7 +142,7 @@ class ChunkProcessor:
try:
docs = await asyncio.to_thread(UnstructuredMarkdownLoader(file_path).load)
except Exception as e:
console.print(f"[red]{Path(file_path).name}: {e}[/red]")
console.print(f"{Path(file_path).name}: {e}", style="red")
return []
splitter = RecursiveCharacterTextSplitter(
@@ -193,7 +171,7 @@ class ChunkProcessor:
await asyncio.to_thread(self.vectorstore.add_documents, docs, ids=ids)
return True
except Exception as e:
console.print(f"[red]✗ Embed error: {e}[/red]")
console.print(f"✗ Embed error: {e}", style="red")
return False
async def index_file(self, file_path: str, cache: dict) -> bool:
@@ -208,14 +186,14 @@ class ChunkProcessor:
try:
self.vectorstore._collection.delete(where={"source": file_path})
except:
pass # Collection might be empty
pass
for i in range(0, len(chunks), BATCH_SIZE):
batch = chunks[i:i + BATCH_SIZE]
await self.embed_batch(batch)
cache[file_path] = current_hash
console.print(f"[green]{Path(file_path).name} ({len(chunks)} chunks)[/green]")
console.print(f"{Path(file_path).name} ({len(chunks)} chunks)", style="green")
return True
# =========================
@@ -269,7 +247,11 @@ class ConversationMemory:
return "\n".join([f"{m['role'].upper()}: {m['content']}" for m in self.messages])
def get_chain(system_prompt):
llm = ChatOllama(model=LLM_MODEL, temperature=0.2)
llm = ChatOllama(
model=LLM_MODEL,
temperature=0.2,
base_url=OLLAMA_BASE_URL
)
prompt = ChatPromptTemplate.from_messages([
("system", system_prompt),
("human", USER_PROMPT_TEMPLATE)
@@ -291,7 +273,10 @@ async def main():
border_style="cyan"
))
embeddings = OllamaEmbeddings(model=EMBEDDING_MODEL)
embeddings = OllamaEmbeddings(
model=EMBEDDING_MODEL,
base_url=OLLAMA_BASE_URL
)
vectorstore = Chroma(
collection_name=COLLECTION_NAME,
persist_directory=CHROMA_PATH,
@@ -301,14 +286,13 @@ async def main():
processor = ChunkProcessor(vectorstore)
cache = load_hash_cache()
console.print("\n[yellow]Checking documents...[/yellow]")
console.print("Checking documents...", style="yellow")
files = [
os.path.join(root, file)
for root, _, files in os.walk(MD_DIRECTORY)
for file in files if file.endswith(".md")
]
# Initial Indexing
semaphore = asyncio.Semaphore(MAX_PARALLEL_FILES)
async def sem_task(fp):
async with semaphore:
@@ -322,77 +306,72 @@ async def main():
observer = start_watcher(processor, cache)
memory = ConversationMemory()
console.print("[bold green]💬 Ready! Type 'exit' to quit.[/bold green]\n")
console.print("💬 Ready! Type 'exit' to quit.", style="bold green")
try:
with patch_stdout():
while True:
query = await session.prompt_async("> ", style=style)
query = query.strip()
if query.lower() in {"exit", "quit", "q"}:
print("Goodbye!")
break
if not query: continue
while True:
query = await session.prompt_async("> ", style=style)
query = query.strip()
if query.lower() in {"exit", "quit", "q"}:
console.print("Goodbye!", style="yellow")
break
if not query: continue
mode = classify_intent(query)
history_str = memory.get_history()
mode = classify_intent(query)
history_str = memory.get_history()
if mode == "SEARCH":
console.print("[bold blue]🔍 SEARCH MODE (Top-K)[/bold blue]")
# Standard RAG
retriever = vectorstore.as_retriever(search_kwargs={"k": TOP_K})
docs = await asyncio.to_thread(retriever.invoke, query)
context_str = "\n\n".join(f"[{Path(d.metadata['source']).name}]\n{d.page_content}" for d in docs)
chain = get_chain(SYSTEM_PROMPT_SEARCH)
else: # ANALYSIS MODE
console.print("[bold magenta]📊 ANALYSIS MODE (Full Context)[/bold magenta]")
# Fetch ALL documents (limited by size)
# Chroma .get() returns dict with keys: ids, embeddings, documents, metadatas
db_data = await asyncio.to_thread(vectorstore.get)
all_texts = db_data['documents']
all_metas = db_data['metadatas']
if not all_texts:
console.print("[red]No documents found to analyze![/red]")
continue
# Concatenate content for analysis
full_context = ""
char_count = 0
# Sort arbitrarily or by source to group files
paired = sorted(zip(all_texts, all_metas), key=lambda x: x[1]['source'])
for text, meta in paired:
entry = f"\n---\nSource: {Path(meta['source']).name}\n{text}\n"
if char_count + len(entry) > MAX_ANALYSIS_CONTEXT_CHARS:
full_context += "\n[...Truncated due to context limit...]"
console.print("[yellow]⚠ Context limit reached, truncating analysis data.[/yellow]")
break
full_context += entry
char_count += len(entry)
context_str = full_context
chain = get_chain(SYSTEM_PROMPT_ANALYSIS)
response = ""
console.print(f"[dim]Context size: {len(context_str)} chars[/dim]")
if mode == "SEARCH":
console.print("🔍 SEARCH MODE (Top-K)", style="bold blue")
async for chunk in chain.astream({
"context": context_str,
"question": query,
"history": history_str
}):
print(chunk, end="")
response += chunk
console.print("\n")
retriever = vectorstore.as_retriever(search_kwargs={"k": TOP_K})
docs = await asyncio.to_thread(retriever.invoke, query)
context_str = "\n\n".join(f"[{Path(d.metadata['source']).name}]\n{d.page_content}" for d in docs)
chain = get_chain(SYSTEM_PROMPT_SEARCH)
memory.add("user", query)
memory.add("assistant", response)
else: # ANALYSIS MODE
console.print("📊 ANALYSIS MODE (Full Context)", style="bold magenta")
db_data = await asyncio.to_thread(vectorstore.get)
all_texts = db_data['documents']
all_metas = db_data['metadatas']
if not all_texts:
console.print("No documents found to analyze!", style="red")
continue
full_context = ""
char_count = 0
paired = sorted(zip(all_texts, all_metas), key=lambda x: x[1]['source'])
for text, meta in paired:
entry = f"\n---\nSource: {Path(meta['source']).name}\n{text}\n"
if char_count + len(entry) > MAX_ANALYSIS_CONTEXT_CHARS:
full_context += "\n[...Truncated due to context limit...]"
console.print("⚠ Context limit reached, truncating analysis data.", style="yellow")
break
full_context += entry
char_count += len(entry)
context_str = full_context
chain = get_chain(SYSTEM_PROMPT_ANALYSIS)
response = ""
console.print(f"Context size: {len(context_str)} chars", style="dim")
console.print("Assistant:", style="blue", end=" ")
async for chunk in chain.astream({
"context": context_str,
"question": query,
"history": history_str
}):
print(chunk, end="")
response += chunk
console.print("\n")
memory.add("user", query)
memory.add("assistant", response)
finally:
observer.stop()
@@ -406,5 +385,5 @@ if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
except KeyboardInterrupt:
console.print("\n[yellow]Goodbye![/yellow]")
console.print("Goodbye!", style="yellow")
sys.exit(0)